On Lyapunov stability of scalar stochastic time-delayed systems
نویسندگان
چکیده
In this paper, we obtain an analytical Lyapunovbased stability conditions for scalar linear and nonlinear stochastic systems with discrete time-delay. The Lyapunov– Krasovskii and Lyapunov–Razumikhin methods are applied with techniques from stochastic calculus to obtain the regions of mean square asymptotic stability in the parameter space. Both delay-independent and delay-dependent stability conditions are analyzed corresponding to both additive and multiplicative stochastic Brownian motion excitation in the Ito form. It is also shown that the derived sufficient conditions are less conservative in comparison with other numerical LMIbased Lyapunov approaches. A range of different stability charts are obtained based on the derived Lyapunov-based stability criteria, which are also compared with numerical first and second moment stability boundaries computed using the stochastic semidiscretization method. A Lipschitz condition is used to treat nonlinear functions of the current and delayed states.
منابع مشابه
Stability analysis of nonlinear hybrid delayed systems described by impulsive fuzzy differential equations
In this paper we introduce some stability criteria of nonlinear hybrid systems with time delay described by impulsive hybrid fuzzy system of differential equations. Firstly, a comparison principle for fuzzy differential system based on a notion of upper quasi-monotone nondecreasing is presented. Here, for stability analysis of fuzzy dynamical systems, vector Lyapunov-like functions are defined....
متن کاملNew Approach to Exponential Stability Analysis and Stabilization for Delayed T-S Fuzzy Markovian Jump Systems
This paper is concerned with delay-dependent exponential stability analysis and stabilization for continuous-time T-S fuzzy Markovian jump systems with mode-dependent time-varying delay. By constructing a novel Lyapunov-Krasovskii functional and utilizing some advanced techniques, less conservative conditions are presented to guarantee the closed-loop system is mean-square exponentially stable....
متن کاملStability analysis of impulsive fuzzy differential equations with finite delayed state
In this paper we introduce some stability criteria for impulsive fuzzy system of differential equations with finite delay in states. Firstly, a new comparison principle for fuzzy differential system compared to crisp ordinary differential equation, based on a notion of upper quasi-monotone nondecreasing, in N dimentional state space is presented. Furthermore, in order to analyze the stability o...
متن کاملRobust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملExponential stability analysis for delayed stochastic Cohen-Grossberg neural network
In this paper, the exponential stability problems are addressed for a class of delayed Cohen-Grossberg neural networks which are also perturbed by some stochastic noises. By employing the Lyapunov method, stochastic analysis and some inequality techniques, sufficient conditions are acquired for checking the pth(p > 1) and the 1st moment exponential stability of the network. Finally, One example...
متن کامل